Codeforces Round 909 (Div. 3)
A
思路
因双方的行动可以相互抵消,故当 \(n\) 不为 \(3\) 的倍数时,先手必胜
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define all(v) v.begin(), v.end()
#define INF 0x3f3f3f3f
#define endl '\n'
const int mod = 998244353;
const int N = 1e5 + 10;
const int M = 1e5 + 10;
void solve()
{
int n;
cin >> n;
cout << (n % 3 ? "First" : "Second") << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--)
solve();
return 0;
}
B
思路
枚举所有的 \(k\) ,计算此时的最大差值,记录出现的最大值。 \(O(n \log n)\)
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define all(v) v.begin(), v.end()
#define INF 0x3f3f3f3f
#define endl '\n'
const int mod = 998244353;
const int N = 1e5 + 10;
const int M = 1e5 + 10;
void solve()
{
int n;
cin >> n;
vector<int> v(n + 10);
for (int i = 1; i <= n; i++)
cin >> v[i];
vector<ll> sum(n + 10);
for (int i = 1; i <= n; i++)
sum[i] = sum[i - 1] + v[i];
ll ans = 0;
for (int i = 1; i < n; i++)
{
if (n % i == 0)
{
vector<ll> a;
for (int j = i; j <= n; j += i)
a.push_back(sum[j] - sum[j - i]);
ans = max(ans, *max_element(all(a)) - *min_element(all(a)));
}
}
cout << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--)
solve();
return 0;
}
C
思路
将数组分为若干个区间,每个区间边界为相邻的奇偶性相同的两个数之间,维护每个区间的最小前缀,可以通过舍弃最小前缀保证当前值是最大值。\(O(n)\)
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long ll;
#define all(v) v.begin(), v.end()
#define INF 0x3f3f3f3f
#define endl '\n'
const int mod = 998244353;
const int N = 1e5 + 10;
const int M = 1e5 + 10;
void solve()
{
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++)
cin >> v[i];
int ans = v[0], sum = v[0], pre = min(0, v[0]);
for (int i = 1; i < n; i++)
{
if ((v[i] + v[i - 1]) % 2 == 0)
{
pre = 0;
sum = 0;
}
sum += v[i];
ans = max(ans, sum - pre);
pre = min(pre, sum);
}
cout << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--)
solve();
return 0;
}
D
思路
通过对式子的改写,可知满足条件的可能情况为 \(b_i = b_j\) 或 \(b_i = 1, b_j = 2\) 或 \(b_i = 2, b_j = 1\) 。
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define all(v) v.begin(), v.end()
#define INF 0x3f3f3f3f
#define endl '\n'
const int mod = 998244353;
const int N = 1e5 + 10;
const int M = 1e5 + 10;
void solve()
{
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++)
cin >> a[i];
ll ans = 0;
map<int, int> mp;
for (int i = 0; i < n; i++)
{
ans += mp[a[i]];
if (a[i] == 1)
ans += mp[2];
if (a[i] == 2)
ans += mp[1];
mp[a[i]]++;
}
cout << ans << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--)
solve();
return 0;
}
E
思路
对于这个序列,我们无法对整个序列的最小值以后的数进行操作,若最小值以后的数不满足不递减的顺序,则这次排序是不可能的,反之则输出最小值之前的元素数量。
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define all(v) v.begin(), v.end()
#define INF 0x3f3f3f3f
#define endl '\n'
const int mod = 998244353;
const int N = 1e5 + 10;
const int M = 1e5 + 10;
void solve()
{
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++)
cin >> v[i];
int pos = min_element(all(v)) - v.begin();
for (int i = pos; i < n - 1; i++)
{
if (v[i] > v[i + 1])
{
cout << -1 << endl;
return;
}
}
cout << pos << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--)
solve();
return 0;
}
F
思路
初始化树为一条链,此时两个叶结点之间的距离为 \(n-1\) ,每次移动 \(n\) 结点,使其与链上编号为 \(d_i\) 的结点相连,此时 \(n\) 结点与 \(1\) 结点之间的距离为 \(d_i\) 。
Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define all(v) v.begin(), v.end()
#define INF 0x3f3f3f3f
#define endl '\n'
const int mod = 998244353;
const int N = 1e5 + 10;
const int M = 1e5 + 10;
void solve()
{
int n, q;
cin >> n >> q;
vector<int> d(q);
for (int i = 0; i < q; i++)
cin >> d[i];
for (int i = 1; i < n; ++i)
cout << i << " " << i + 1 << endl;
int now = n - 1;
for (int dis : d)
{
if (dis != now)
{
cout << n << " " << now << " " << dis << endl;
now = dis;
}
else
cout << "-1 -1 -1" << endl;
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin >> t;
while (t--)
solve();
return 0;
}
Codeforces Round 909 (Div. 3)
http://xiaowhang.github.io/archives/2728152226/